
引起软包锂离子电池鼓胀的原因有很多。根据实验研发经验,笔者将锂电池鼓胀的原因分为三类,一是电池极片在循环过程中膨胀导致的厚度增加;二是由于电解液氧化分解产气导致的鼓胀。三是电池封装不严引进水分、角位破损等工艺缺陷引起的鼓胀。在不同的电池体系中,电池厚度变化的主导因素不同,如在钛酸锂负极体系电池中,鼓胀的主要因素是气鼓;在石墨负极体系中,极片厚度和产气对电池的鼓胀均起到促进作用。
一、电极极片厚度变化
锂离子电池在充电过程中电芯厚度增加主要归结为负极的膨胀,正极膨胀率仅为2~4%负极通常由石墨、粘接剂、导电碳组成,其中石墨材料本身的膨胀率达到~10%,造成石墨负极膨胀率变化的主要影响因素包括:SEI膜形成、荷电状态(state of charge,SOC)、工艺参数以及其他影响因素。
1、SEI膜形成:
锂离子电池首次充放电过程中,电解液在石墨颗粒在固液相界面发生还原反应,形成一层覆盖于电极材料表面的钝化层(SEI膜),SEI膜的产生使阳极厚度显著增加,而且由于SEI膜产生,导致电芯厚度增加约4%。从长期循环过程看,根据不同石墨的物理结构和比表面,循环过程会发生SEI的溶解和新SEI生产的动态过程,比如片状石墨较球状石墨有更大的膨胀率。
2、荷电状态:
电芯在循环过程中,石墨阳极体积膨胀与电芯SOC呈很好的周期性的函数关系,即随着锂离子在石墨中的不断嵌入(电芯SOC的提高)体积逐渐膨胀,当锂离子从石墨阳极脱出时,电芯SOC逐渐减小,相应石墨阳极体积逐渐缩小。
3、工艺参数:
从工艺参数方面看,压实密度对石墨阳极影响较大,极片冷压过程中,石墨阳极膜层中产生较大的压应力,这种应力在极片后续高温烘烤等工序很难完全释放。电芯进行循环充放电时,由于锂离子的嵌入和脱出、电解液对粘接剂溶胀等多个因素共同作用,膜片应力在循环过程得到释放,膨胀率增大。
另一方面,压实密度大小决定了阳极膜层空隙容量大小,膜层中孔隙容量大,可以有效吸收极片膨胀的体积,空隙容量小,当极片膨胀时,没有足够的空间吸收膨胀所产生的体积,此时,膨胀只能向膜层外部膨胀,表现为阳极片的体积膨胀。
4、其他因素:
粘接剂的粘接强度(粘接剂、石墨颗粒、导电碳以及集流体相互间界面的粘接强度),充放电倍率,粘接剂与电解液的溶胀性,石墨颗粒的形状及其堆积密度,以及粘接剂在循环过程失效引起的极片体积增加等,均对阳极膨胀有一定程度的影响。
二、电池产气引起的鼓胀
电池内部产气是导致电池鼓胀的另一重要原因,无论是电池在常温循环、高温循环、高温搁置时,其均会产生不同程度的鼓胀产气。电池在首次充放电过程中,电极表面会形成SEI (Solid Electrolyte Interface)膜。负极SEI膜的形成主要来于EC(Ethylene Carbonate)的还原分解,在烷基锂和Li2CO3的生成的同时,会有大量的CO和C2H4生成。溶剂中的DMC (Dimethyl Carbonate)、EMC (Ethyl Methyl Carbonate)也会在成膜过程中成RLiCO3和ROLi,伴随产生CH4、C2H6和C3H8等气体与CO气体。在PC (Propylene carbonate)基电解液中,气体的产生相对较多,主要是PC还原生成的C3H8气体。
磷酸铁锂软包电池在第一次循环时在0.1C充电结束后气胀的最为严重。以上可知,SEI的形成会伴随着大量气体的产生,这个不可避免的过程。杂质中H2O的存在会使LiPF6中的P-F键不稳定,生成HF,HF将导致这个电池体系的不稳定,伴随产生气体。过量H2O的存在会消耗掉Li+,生成LiOH、LiO2和H2导致产生气体。
储存和长期充放电过程中也会有气体的产生,对于密封的锂离子电池而言,大量的气体出现会造成电池气胀,从而影响电池的性能,缩短电池的使用寿命。电池在储存过程中产生气体的主要原因有以下两点:
1、电池体系中存在的H2O会导致HF的生成,造成对SEI的破坏。体系中的O2可能会造成对电解液的氧化,导致大量CO2的生成;
2、若首次化成形成的SEI膜不稳定会导致存储阶段SEI膜被破坏,SEI膜的重新修复会释放出以烃类为主的气体。电池长期充放电循环过程中,正极材料的晶形结构发生变化,电极表面的点电位的不均一等因素造成某些点电位过高,电解液在电极表面的稳定性下降,电极表面膜不断增厚使电极界面电阻增大,更进一步提高反应电位,造成电解液在电极表面的分解产生气体,同时正极材料也可能释放出气体。
在不同体系中,电池产鼓胀程度不同。在石墨负极体系电池中,产气鼓胀的原因主要还是如上所述的SEI膜生成、电芯内水分超标、化成流程异常、封装不良等,而在钛酸锂负极体系中,产业界普遍认为 Li4Ti5O12电池的胀气主要是材料自身容易吸水所导致的,但没有确切证据来证明这一猜测。
三、工序异常导致产生气体引起膨胀
1、封装不良:
由封装不良所引起胀气电池芯的比例已经大大地降低。前面已经介绍了引起Top sealing、Side sealing和Degassing三边封装不良的原因,任何一边封装不良都会导致电池芯,表现以Top sealing 和Degassing居多,Top sealing主要是Tab位密封不良,Degassing主要是分层(包括受电解液和凝胶影响导致PP与Al脱离)。封装不良引起空气中水分进入电池芯内部,引起电解液分解产生气体等。
2、Pocket表面破损:电池芯在流拉过程中,受到异常损坏或人为破环导致Pocket破损(如针孔)而使水分进入电池芯内部。
3、角位破损:
由于折边角位铝的特殊变形,气袋晃动会扭曲角位导致Al破损(电池芯越大,气袋越大,越易破损),失去对水的阻隔作用。可以在角位加皱纹胶或热熔胶缓解,并且在顶封后的各工序禁止拿气袋移动电池芯,更要注意操作方式防止老化板上电芯池的摆动。
4、电池芯内部水含量超标,一旦水含量超标,电解液会失效在化成或Degassing后产生气体。造成电池内部水含量超标的原因主要有:电解液水含量超标,Baking后裸电芯水含量超标,乾燥房湿度超标。若怀疑水含量超标导致胀气,可进行工序的追溯检查。
5、化成流程异常,错误的化成流程会导致电池芯发生胀气。
6、SEI膜不稳定,电池芯在容量测试充放电过程中发射功能轻微胀气。
7、过充、过放,由于流程或机器或保护板的异常,使电池芯被过充或过度放电,电池芯会发生严重鼓气。
8、短路,由于操作失误导致带电电芯两Tab接触发生短路,电池芯会发生鼓气同时电压迅速下降,Tab会被烧黑。
9、内部短路,电池芯内部阴阳极短路导致电芯迅速放电发热同时严重鼓气。内部短路的原因有很多种:设计问题;隔离膜收缩、捲曲、破损;Bi-cell错位;毛刺刺穿隔离膜;夹具压力过大;烫边机过度挤压等。例如曾经由于宽度不足,烫边机过度挤压电芯实体导致阴阳极短路胀气。
10、腐蚀,电池芯发生腐蚀,铝层被反应消耗,失去对水的阻隔作用,发生胀气。
11、真空抽气异常,系统或机器的原因导致真空度异常Degassing抽气不彻底;Vacuum Sealing的热辐射区过大,导致Degassing抽气刺刀不能有效地刺破Pocket袋而导致抽气不干净。
四、抑制异常产气的措施
抑制异常产气需要从材料设计和制造工艺两方面着手,首先要设计优化材料及电解液体系,保证形成致密稳定的SEI膜,提高正极材料的稳定性,抑制异常产气的发生。
针对电解液的处理常常采用添加少量的成膜添加剂的方法使SEI膜更均匀、致密,减少电池在使用过程中的SEI膜脱落和再生过程产气导致电池鼓胀,相关研究已有报道并在实际中得到应用,如哈尔滨理工大学的成夙等报道,使用成膜添加剂VC可以减少电池气胀现象。但研究多集中在单组分添加剂上,效果有限。
研究表明,EC、VC形成的SEI膜组分为线性烷基碳酸锂,高温下附在LiC的烷基碳酸锂不稳定,分解生成气体(如CO2等)而产生电池鼓胀。而PS形成的SEI膜为烷基磺酸锂,虽膜有缺陷,但存在着一定的二维结构,附在LiC高温下仍较稳定。
当VC和PS复合使用时,在电压较低时PS在负极表面形成有缺陷的二维结构,随着电压的升高VC在负极表面又形成线性结构的烷基碳酸锂,烷基碳酸锂填充于二维结构的缺陷中,形成稳定附在LiC具有网络结构的SEI膜。此种结构的SEI膜大大提高了其稳定性,可以有效抑制由于膜分解导致的产气。
此外由于正极钴酸锂材料与电解液的相互作用,使其分解产物会催化电解液中溶剂分解,所以对于正极材料进行表面包覆,不但可以增加材料的结构稳定性,还可以减少正极与电解液的接触,降低活性正极催化分解所产生的气体。因此,正极材料颗粒表面形成稳定完整的包覆层也是目前的一大发展方向。